Комитет по образованию Санкт-Петербурга Государственное бюджетное нетиповое образовательное учреждение «Санкт-Петербургский городской Дворец творчества юных»

об открытой городской распределенной Олимпиаде по инженерному 3D-моделированию

1. Общие положения

1.1. Цель Олимпиады:

Открытая городская распределенная Олимпиада по инженерному 3D-моделированию (далее - Олимпиада) проводится с целью активизации и методической поддержки образовательной деятельности в области инженерного 3D моделирования, определения текущего уровня подготовки учащихся по данной компетенции, выявления и поощрения талантливых учащихся.

1.2. Задачи Олимпиады:

- Систематически проводить мониторинг качества обучения школьников по направлению инженерное 3D-моделирования.
- Формировать общие требования к содержанию изучаемых компетенций и качеству подготовки детей и педагогов.
- Составлять базу данных и рейтингов участников Олимпиады с целью использования, в том числе, при отборе участников соревнований по стандартам JuniorSkills по компетенциям, предполагающим использование САПР («Прототипирование», «Инженерный дизайн САD», «Лазерные технологии»).
- Создать и апробировать модель проведения соревнований по инженерному 3D моделирования с целью формирования предложений по включения инженерного 3D моделирования во Всероссийские Школьные Олимпиады по предмету «Технология».

2. Учредитель Олимпиады:

• Комитет по образованию Санкт-Петербурга.

3. Организаторы Олимпиады:

• ГБНОУ «СПБ ГДТЮ», Городское учебно-методическое объединение педагогов дополнительного образования детей государственных образовательных учреждений по направлению «инженерное 3-D моделирование».

Соорганизаторы Олимпиады:

- ГБУ ДО ЦДЮТТИТ Пушкинского района Санкт-Петербурга
- ГБОУ Лицей №244 Кировского района Санкт-Петербурга
- ГБОУ СОШ №255 Адмиралтейского района Санкт-Петербурга
- СПбПУ ИММиТ КТМ "Инженеры будущего России"

4. Дата и время проведения Олимпиады:

28 января 2017 года, 14.00-18.00

5. Участники Олимпиалы:

Участником Олимпиады может стать любой обучающийся, соответствующий следующим требованиям:

- Возраст: от 10 до 17 лет;
- Требования к подготовке: не менее полугода обучения основам инженерного 3D-моделирования в САПР согласно Приложению 1;
- Место обучения участников Олимпиады: образовательные учреждения любых видов и типов Санкт-Петербурга и других регионов Российской Федерации. Возможно участие представителей образовательных учреждений других стран;
- Участие в Олимпиаде является индивидуальным.

6. Порядок организации и проведения Олимпиады

- 6.1. Олимпиада проводится как очное распределенное соревнование, проходящее одновременно на нескольких площадках, с использованием средств онлайн-тестирования и сохранением результатов выполнения задания Олимпиады участников в «облачном» хранилище, предоставляемом организаторами Олимпиады;
- 6.2. Олимпиада проводится одновременно для всех возрастных групп и по общему заданию. Победители определяются отдельно в возрастных группах: 10-11, 12-14, 15-17;
- 6.3. Для информационной поддержки Олимпиады все необходимые материалы размещаются на сайте Олимпиады (http://learn.cttit.ru/).

Потенциальные участники Олимпиады и их преподаватели не позднее, чем за 8 дней до даты проведения Олимпиады, должны получить доступ к информационным материалам Олимпиады согласно Приложению 2;

- 6.4. Для участия в Олимпиаде участники и преподаватели должны пройти онлайн регистрацию согласно Приложению 2 не позднее, чем за 5 дней до даты проведения Олимпиады. Обязательным при регистрации является изучение правил проведения Олимпиады и технологии сохранения результатов выполнения задания. Организаторы Олимпиады предоставляют участникам информацию о тематике заданий, о технологии внесения в систему онлайн-тестирования ответов и об отправке файлов с результатами выполнения задания;
- 6.5. Не позднее, чем за 10 дней до проведения Олимпиады, организаторы публикуют список площадок проведения соревнований, с указанием числа доступных мест для работы в каждой из САПР указанных в Приложении 1;
- 6.6. Потенциальные участники Олимпиады имеют право выбрать удобную для себя площадку проведения соревнований, с учетом имеющихся в наличии на площадках свободных мест и установленных САПР. Выбор площадки является подтверждением участия в Олимпиаде.

7. Площадки проведения Олимпиады

- 7.1. Любая организация, имеющая право на образовательную деятельность, может заявить о своем желании выступить в качестве площадки проведения Олимпиады;
- 7.2. Организация, получившая статус площадки Олимпиады, должна предоставить на время проведения Олимпиады компьютерный класс или иное помещение с компьютерами, с установленным программным обеспечением (одной или несколькими САПР, указанными в Приложении 1). Организация обеспечивает на площадке присутствие не менее двух ведущих (преподавателей), представляющих, по возможности, разные учебные заведения. Решение о получении организацией статуса площадки Олимпиады принимается организаторами Олимпиады не менее, чем за 10 дней до даты проведения Олимпиады;
- 7.3. Ведущие поддерживают дисциплину и рабочую обстановку на площадке, обеспечивают технику безопасности и устраняют технических проблем, которые могут возникнуть у участников во время выполнения задания Олимпиады;
- 7.4. Ведущие на площадке должны: а) быть компетентны в работе с каждой из установленных САПР, б) заранее ознакомиться с примерами заданий и

особенностями ввода ответов на разные типы вопросов в системе онлайнтестирования;

- 7.5. Ведущие не могут помогать участникам в содержательной части ответов на тестовые вопросы и в выполнении задания, но могут оказывать помощь организационно-технического характера;
- 7.6. Каждому участнику Олимпиады должен быть предоставлен компьютер с установленной одной или несколькими (на выбор участника) САПР и доступом в Интернет. Характеристики компьютера должны быть достаточными для эффективной работы в выбранных САПР согласно Приложению 3;
- 7.7. Участникам Олимпиады разрешается участие в соревновании со своими ноутбуками на одной из площадок проведения Олимпиады. В этом случае участнику должно быть предоставлено рабочее место в соответствии с нормами СанПиН;
- 7.8. Ответственный за площадку заблаговременно сообщает организаторам Олимпиады сколько мест и с какими САПР будет подготовлено на площадке, включая количество рабочих мест для участников со своими ноутбуками.

8. Содержание и порядок выполнения заданий Олимпиады

- 8.1. Олимпиадное задание представлено в виде онлайн-теста, содержащего вопросы и задания по моделированию. Вопросы и задания расположены в порядке возрастания сложности и покрывают все основные навыки инженерного 3D-моделирования, конструирования и прототипирования, которыми должны владеть участники. Тематика заданий более подробно рассмотрена в Приложении 4;
- 8.2. Участники олимпиады право имеют выполнять задания как последовательно, так и в произвольном порядке, кроме случаев, когда задание опирается на результат, полученный в предыдущем задании. В этом случае текст задания содержит четкие указания на данные, которые должны быть взяты из предыдущего задания.

9. Оценка работ и публикация результатов Олимпиады

- 9.1. Оценке подлежат задания двух видов:
- Одна часть заданий требует подсчёта тех или иных параметров построенных деталей, например, координат центра тяжести детали, выполненной по чертежу. Значение вычисленного параметра заносится в специальную форму.

- Другая, более сложная часть заданий, подразумевает отсылку результата в общее файловое хранилище результатов тестирования. Согласно заданию, это могут быть файлы деталей, сборок, скриншоты, изображения, анимационные ролики.
- 9.2. Модели или ответы, подлежащие экспертной оценке, анонимизируются и оцениваются не менее чем 3-мя экспертами (членами жюри), владеющими данной САПР. В систему вносится усредненный результат оценки;
- 9.3. Результаты участников публикуются не позднее 15 рабочих дней после завершения Олимпиады.
- 9.4. В течение 2-х дней после даты опубликования результатов, участник Олимпиады может подать на апелляцию, обратившись в оргкомитет олимпиады по адресу электронной почты 3dgumo@gmail.com.
- 9.5. Баллы участника по каждому аспекту подсчитываются отдельно, формируя его «профиль» или «спектр навыков». Полные профили результатов всех участников публикуются на страницах Олимпиады.
- 9.6. Из детальных профилей формируются как обобщенные рейтинги участников, так и специализированные рейтинги по каждой из компетенций JuniorSkills, связанных с использованием САПР;
- 9.7. Специализированные рейтинги участников Олимпиады будут учитываться при отборе команд на соревнования по компетенциям JuniorSkills, связанным с работой в САПР («Прототипирование», «Инженерный дизайн САПР», «Лазерные технологии» и др.).

10. Награждение победителей

Награждение призеров Олимпиады проводится на заключительном празднике 20 февраля 2017 года в 12-00 в ГБНОУ «Академия талантов» Санкт-Петербурга по адресу: Набережная реки Малой Невки, д.1.

ПО, используемое на Олимпиаде

Участникам любой САПР Олимпиады разрешено использовать параметрического твердотельного моделирования, при условиях, что (а) для него возможно получить бесплатную образовательную лицензию, либо он является бесплатным, **(**6) $CA\Pi P$ содержит всю необходимую функциональность, перечисленную ниже.

На Олимпиаде официально поддерживаются и рекомендуются к установке на каждой площадке, с учетом технической возможности и фактической необходимости, следующие САПР:

- Autodesk Inventor, не ниже версии v. 2015
- PTC Creo Parametric, не ниже версии v. 2.0
- АСКОН Компас 3D, не ниже версии v. 13
- САПР, удовлетворяющие условиям, но не входящие в перечисленный список, участники могут использовать по предварительному согласованию с организаторами площадки.

Любая САПР, применяемая на Олимпиаде, должна поддерживать:

- Эскизирование. Полноценные инструменты работы в эскизе, включая разные виды отрезков, дуг, окружностей, эллипсов и сплайнов, эскизные зависимости (совмещение точек, параллельность, перпендикулярность, равенство размеров, коллинеарность, касательность), работу со вспомогательной геометрией, проекции, установку размеров.
- **Базовые 3D операции,** включая выдавливание, вращение, сдвиг по направляющей, линейные и круговые массивы элементов, развитые средства построения рабочих плоскостей.
- **Команды вычисления объема**, массы и положения центра тяжести модели (необходимые для ответов на вопросы с автопроверкой).
- Работу со сборочными моделями, включая установление сборочных зависимостей и анимацию движения механизмов.
- **Продвинутые 3D операции**, включая лофты, работу с поверхностями и freestyle-моделирование.
- Генерация чертежей по 3D-модели, включая проекционные виды с простановкой размеров, разрезы и сечения, изометрию.

• Экспорт файлов: в нейтральном STEP формате, в STL формате (для заданий, связанных с прототипированием), в DXF формате (для заданий по лазерной резке)

Дополнительное ПО

Кроме собственно САПР, на компьютерах всех участников должно быть установлено следующее (бесплатное) ПО, необходимое для выполнения заданий Олимпиады:

Наименование	Использование и требуемые навыки	Где получить
Green Shot или эквивалентное ПО для получения снимков экрана	Во всех заданиях, где в качестве ответа требуется снимок экрана. Требования к ПО: умеет сохранять в файл выделенный фрагмент экрана.	http://getgreens hot.org/downlo ads/
Repetier Host 1.6.2	Для заданий, связанных с подготовкой модели к 3D-печати. Надо знать расположение всех настроек в программе и уметь настроить принтер по заданной таблице параметров, расположить модель на рабочем столе, выполнить слайсинг, оценить время печати и расход пластика.	https://www.re petier.com/dow nload-now/
Laser Works 8.01.10	Для заданий, связанных с лазерной резкой. Надо уметь оптимально разместить детали на рабочем столе, установить режимы резания, указанные в задании.	http://www.yus to.ru/images/so ft/RDCam- 8.01.10-rus.zip

Приложение 2

Адрес информационного ресурса Олимпиады http://learn.cttit.ru/. Регистрация на олимпиаду:

Дистанционный курс по подготовке к Олимпиаде размещен на странице дистанционного обучения ЦДЮТТИТ (http://learn.cttit.ru/). Курс содержит всю необходимую техническую и методическую информацию по подготовке к Олимпиаде, а также примеры заданий.

Приложение 3

Минимальные требования к компьютерам, необходимые для эффективной работы САПР.

Операционная система:

- Windows XP Professional Edition
- Windows XP Home Edition
- Windows 7 Professional x64 Edition
- Windows 7 Ultimate x64 Edition
- Windows 7 Enterprise x64 Edition
- Windows 8 Professional x64 Edition
- Windows 10 Professional x64 Edition

Процессоры:

- Intel: Pentium Xeon Core Duo/Core 2 Duo
- AMD: двухъядерные, четырехъядерные Opteron
- Оперативная память: 2024Мb и более
- Файл подкачки: 1Gb или более
- Доступное дисковое пространство: 2Gb
- Частота процессора: 1 ГГц, рекомендуется 2,4 ГГц

Дисплей с разрешением минимум 1280х1024

3-кнопочная мышь, совместимая с Microsoft

Темы заданий и проверяемые навыки

- Работа в эскизе (использование инструментов эскизирования, расстановка эскизных зависимостей и размеров, использование проекций).
- Базовые навыки моделирования детали (чтение чертежа, моделирование детали по чертежу, выдавливания, вращения, линейные и круговые массивы, построение рабочих плоскостей, фаски и сопряжения).
- Простые сборки (без движущихся частей или с простейшими вращательными соединениями).
- Продвинутые приемы моделирования (лофты, работа с поверхностями, параметризация модели).
- Конструирование механизмов и сложные сборки (моделируется механизм, частично представленный чертежами или рисунками, к нему конструируются (т. е. самостоятельно додумываются и моделируются) недостающие детали, работа механизма проверяется анимацией сборочной модели).
- Подготовка анимаций и презентаций (рендеринг модели, анимация работы механизма, создание разнесенного вида).
- Основы протипирования: особенности и ограничения 3D-печати, настройка 3D-принтера в программе RepetierHost («виртуальная», т. е. без принтера), подготовка модели к печати (установить модель в правильное положение, настроить параметры, порезать слайсером, получить снимок с экрана, ответить на вопросы о продолжительности печати и количестве используемого пластика).
- Основы моделирования для лазерной резки (деталировка модели на плоские элементы, соединения шип-паз, паз-паз и винтовые соединения, экспорт плоских векторных файлов (DXF) и их размещение в программе RDWorks).

11